

BEGINNING
DATABASE DESIGN SOLUTIONS

INTRODUCTION ��xxv

▸▸ PART 1 �INTRODUCTION TO DATABASES
AND DATABASE DESIGN

CHAPTER 1	 Database Design Goals ���3

CHAPTER 2	 Relational Overview���29

CHAPTER 3	 NoSQL Overview���47

▸▸ PART 2 DATABASE DESIGN PROCESS AND TECHNIQUES

CHAPTER 4	 Understanding User Needs���83

CHAPTER 5	 Translating User Needs into Data Models���111

CHAPTER 6	 Extracting Business Rules���145

CHAPTER 7	 Normalizing Data���163

CHAPTER 8	 Designing Databases to Support Software���������������������������������������203

CHAPTER 9	 Using Common Design Patterns ���215

CHAPTER 10	 Avoiding Common Design Pitfalls���241

▸▸ PART 3 A DETAILED CASE STUDY

CHAPTER 11	 Defining User Needs and Requirements���263

CHAPTER 12	 Building a Data Model���283

CHAPTER 13	 Extracting Business Rules���303

CHAPTER 14	 Normalizing and Refining���313

▸▸ PART 4 EXAMPLE PROGRAMS

CHAPTER 15	 Example Overview���327

CHAPTER 16	 MariaDB in Python���339

CHAPTER 17	 MariaDB in C# ���355

CHAPTER 18	 PostgreSQL in Python ���369

CHAPTER 19 PostgreSQL in C# � 389

CHAPTER 20 Neo4j AuraDB in Python � 401

CHAPTER 21 Neo4j AuraDB in C#� 417

CHAPTER 22 MongoDB Atlas in Python � 431

CHAPTER 23 MongoDB Atlas in C#� 453

CHAPTER 24 Apache Ignite in Python � 467

CHAPTER 25 Apache Ignite in C# � 477

▸ PART 5 ADVANCED TOPICS

CHAPTER 26 Introduction to SQL � 489

CHAPTER 27 Building Databases with SQL Scripts � 519

CHAPTER 28 Database Maintenance� 533

CHAPTER 29 Database Security� 545

APPENDIX A Exercise Solutions �557

APPENDIX B Sample Relational Designs � 649

GLOSSARY� 671

INDEX � 683

BEGINNING

Database Design Solutions

BEGINNING

Database Design Solutions

UNDERSTANDING AND IMPLEMENTING
DATABASE DESIGN CONCEPTS FOR THE

CLOUD AND BEYOND

Second Edition

Rod Stephens

Copyright © 2023 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

ISBN: 978-1-394-15572-9
ISBN: 978-1-394-15583-5 (ebk.)
ISBN: 978-1-394-15584-2 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permission.

Trademarks: WILEY and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affil-
iates, in the United States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this
book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not
be suitable for your situation. You should consult with a professional where appropriate. Further, readers should be aware
that websites listed in this work may have changed or disappeared between when this work was written and when it is read.
Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not
limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

If you believe you’ve found a mistake in this book, please bring it to our attention by emailing our reader support team at
wileysupport@wiley.com with the subject line “Possible Book Errata Submission.”

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2022946646

Cover image: © mfto/Getty Images
Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
mailto:wileysupport@wiley.com
http://www.wiley.com

For those who read the back cover, dedication,

introductory chapter, and glossary. The five of us

need to stick together!

Also to Amy, Ken, and Elissa for sanity-preserving

doses of silliness.

ABOUT THE AUTHOR

Rod Stephens started out as a mathematician, but while studying at MIT, he discovered how much fun
programming is and he’s been programming professionally ever since. He’s a longtime developer,
instructor, and author who has written more than 250 magazine articles and 37 books that have been
translated into languages around the world.

During his career, Rod has worked on an eclectic assortment of applications in such fields as telephone
switching, billing, repair dispatching, tax processing, wastewater treatment, concert ticket sales, cartog-
raphy, optometry, and training for professional football teams. (That’s U.S. football, not one of the kinds
with the round ball. Or the kind with three downs. Or the kind with an oval field. Or the indoor kind.
Let’s just say NFL and leave it at that.)

Rod’s popular C# Helper website (www.csharphelper.com) receives millions of hits per year and
contains thousands of tips, tricks, and example programs for C# programmers. His VB Helper website
(www.vb-helper.com) contains similar material for Visual Basic programmers.

ABOUT THE TECHNICAL EDITOR

John Mueller is a freelance author and technical editor. He has writing in his blood, having produced
123 books and more than 600 articles to date. The topics range from networking to artificial intelligence
and from database management to heads-down programming. Some of his current books include
discussions of data science, machine learning, and algorithms. He also writes about computer languages
such as C++, C#, and Python. His technical editing skills have helped more than 70 authors refine the
content of their manuscripts. John has provided technical editing services to a variety of magazines,
performed various kinds of consulting, and he writes certification exams. Be sure to read John’s blog
at http://blog.johnmuellerbooks.com. You can reach John on the Internet at
John@JohnMuellerBooks.com. John also has a website at www.johnmuellerbooks.com.

http://www.csharphelper.com
http://www.vb-helper.com
http://blog.johnmuellerbooks.com/
mailto:John@JohnMuellerBooks.com
http://www.johnmuellerbooks.com

ACKNOWLEDGMENTS

Thanks to Ken Brown, Jan Lynn Neal, Archana Pragash, Melissa Burlock, and all the others who
worked so hard to make this book possible.

Thanks also to technical editor and longtime friend John Mueller for giving me the benefit of his
valuable experience. You can see what John’s up to at www.johnmuellerbooks.com.

http://www.johnmuellerbooks.com

CONTENTS

INTRODUCTION� XXV

PART 1: INTRODUCTION TO DATABASES AND DATABASE DESIGN

CHAPTER 1: DATABASE DESIGN GOALS� 3

The Importance of Design� 4
Information Containers� 6
Strengths and Weaknesses of Information Containers� 8
Desirable Database Features� 9

CRUD� 10
Retrieval� 10
Consistency� 11
Validity� 11
Easy Error Correction� 12
Speed� 13
Atomic Transactions� 13
ACID� 14
BASE� 16
NewSQL� 17
Persistence and Backups� 17
Low Cost and Extensibility� 18
Ease of Use� 19
Portability� 19
Security� 20
Sharing� 21
Ability to Perform Complex Calculations� 21
CAP Theorem� 22
Cloud Considerations� 22
Legal and Security Considerations� 23
Consequences of Good and Bad Design� 24

Summary� 26

CHAPTER 2: RELATIONAL OVERVIEW� 29

Picking a Database� 30
Relational Points of View� 31

Contents

xii

Table, Rows, and Columns� 32
Relations, Attributes, and Tuples� 34
Keys� 34
Indexes� 36
Constraints� 37

Domain Constraints� 37
Check Constraints� 37
Primary Key Constraints� 38
Unique Constraints� 38
Foreign Key Constraints� 38

Database Operations� 40
Popular RDBs� 41
Spreadsheets� 43
Summary� 44

CHAPTER 3: NoSQL OVERVIEW� 47

The Cloud� 47
Picking a Database� 50
NoSQL Philosophy� 50
NoSQL Databases� 50

Document Databases� 51
Key-Value Database� 52
Column-Oriented Databases� 53
Graph Databases� 53

Street Networks� 54
Communication Networks� 55
Social Media Apps� 55
E-Commerce Programs� 55
Algorithms� 56

Hierarchical Databases� 56
Less Exotic Options� 59

Flat Files� 59
XML Files� 60

XML Basics� 61
XML Practices� 64
XML Summary� 66

JSON Files� 67
Spreadsheets� 69

More Exotic Options� 70
Object� 70

Contents

xiii

Deductive� 70
Dimensional� 70
Temporal� 71

Database Pros and Cons� 72
Relational� 72
General NoSQL� 73
Quick Guidelines� 74

Summary� 76

PART 2: DATABASE DESIGN PROCESS AND TECHNIQUES

CHAPTER 4: UNDERSTANDING USER NEEDS� 83

Make a Plan� 84
Bring a List of Questions� 85

Functionality� 85
Data Needs� 86
Data Integrity� 86
Security� 87
Environment� 88

Meet the Customers� 88
Learn Who’s Who� 89
Pick the Customers’ Brains� 93
Walk a Mile in the User’s Shoes� 93
Study Current Operations� 94
Brainstorm� 94
Look to the Future� 95
Understand the Customers’ Reasoning� 96
Learn What the Customers Really Need� 97
Prioritize� 98
Verify Your Understanding� 99
Create the Requirements Document� 101
Make Use Cases� 102
Decide Feasibility� 106
Summary� 106

CHAPTER 5: TRANSLATING USER NEEDS INTO DATA MODELS� 111

What Are Data Models?� 112
User Interface Models� 114
Semantic Object Models� 118

Contents

xiv

Classes and Objects� 119
Cardinality� 120
Identifiers� 120
Putting It Together� 121
Semantic Views� 122
Class Types� 124

Simple Objects� 124
Composite Objects� 124
Compound Objects� 125
Hybrid Objects� 125
Association Objects� 126
Inherited Objects� 128

Comments and Notes� 129
Entity-Relationship Models� 130

Entities, Attributes, and Identifiers� 131
Relationships� 132
Cardinality� 133
Inheritance� 134
Additional Conventions� 136
Comments and Notes� 137

Relational Models� 137
Converting Semantic Object Models� 138
Converting ER Diagrams� 140

Summary� 142

CHAPTER 6: EXTRACTING BUSINESS RULES� 145

What Are Business Rules?� 145
Identifying Key Business Rules� 147
Extracting Key Business Rules� 152
Multi-Tier Applications� 154
Summary� 158

CHAPTER 7: NORMALIZING DATA� 163

What Is Normalization?� 163
First Normal Form (1NF)� 164
Second Normal Form (2NF)� 173
Third Normal Form (3NF)� 177
Stopping at Third Normal Form� 181
Boyce-Codd Normal Form (BCNF)� 181
Fourth Normal Form (4NF)� 185

Contents

xv

Fifth Normal Form (5NF)� 190
Domain/Key Normal Form (DKNF)� 193
Essential Redundancy� 195
The Best Level of Normalization� 197
NoSQL Normalization� 197
Summary� 199

CHAPTER 8: DESIGNING DATABASES TO SUPPORT SOFTWARE� 203

Plan Ahead� 204
Document Everything� 204
Consider Multi-Tier Architecture� 205
Convert Domains into Tables� 205
Keep Tables Focused� 206
Use Three Kinds of Tables� 207
Use Naming Conventions� 209
Allow Some Redundant Data� 210
Don’t Squeeze in Everything� 211
Summary� 212

CHAPTER 9: USING COMMON DESIGN PATTERNS� 215

Associations� 216
Many-to-Many Associations� 216
Multiple Many-to-Many Associations� 216
Multiple-Object Associations� 218
Repeated Attribute Associations� 221
Reflexive Associations� 222

One-to-One Reflexive Associations� 223
One-to-Many Reflexive Associations� 224
Hierarchical Data� 225
Hierarchical Data with NoSQL� 228
Network Data� 229
Network Data with NoSQL� 231

Temporal Data� 232
Effective Dates� 232
Deleted Objects� 233
Deciding What to Temporalize� 234

Logging and Locking� 236
Audit Trails� 236
Turnkey Records� 237

Summary� 238

Contents

xvi

CHAPTER 10: AVOIDING COMMON DESIGN PITFALLS� 241

Lack of Preparation� 241
Poor Documentation� 242
Poor Naming Standards� 242
Thinking Too Small� 244
Not Planning for Change� 245
Too Much Normalization� 248
Insufficient Normalization� 248
Insufficient Testing� 249
Performance Anxiety� 249
Mishmash Tables� 250
Not Enforcing Constraints� 253
Obsession with IDs� 253
Not Defining Natural Keys� 256
Summary� 257

PART 3: A DETAILED CASE STUDY

CHAPTER 11: DEFINING USER NEEDS AND REQUIREMENTS� 263

Meet the Customers� 263
Pick the Customers’ Brains� 265

Determining What the System Should Do� 265
Determining How the Project Should Look� 267
Determining What Data Is Needed for the User Interface� 268
Determining Where the Data Should Come From� 269
Determining How the Pieces of Data Are Related� 269
Determining Performance Needs� 271
Determining Security Needs� 272
Determining Data Integrity Needs� 273

Write Use Cases� 275
Write the Requirements Document� 279
Demand Feedback� 280
Summary� 281

CHAPTER 12: BUILDING A DATA MODEL� 283

Semantic Object Modeling� 283
Building an Initial Semantic Object Model� 283
Improving the Semantic Object Model� 286

Entity-Relationship Modeling� 289

Contents

xvii

Building an ER Diagram� 289
Building a Combined ER Diagram� 291
Improving the Entity-Relationship Diagram� 293

Relational Modeling� 294
Putting It All Together� 298
Summary� 299

CHAPTER 13: EXTRACTING BUSINESS RULES� 303

Identifying Business Rules� 303
Courses� 304
CustomerCourses� 306
Customers� 307
Pets� 307
Employees� 307
Orders� 307
OrderItems� 308
InventoryItems� 308
TimeEntries� 308
Shifts� 309
Persons� 309
Phones� 309
Vendors� 309

Drawing a New Relational Model� 310
Summary� 310

CHAPTER 14: NORMALIZING AND REFINING� 313

Improving Flexibility� 313
Verifying First Normal Form� 315
Verifying Second Normal Form� 318

Pets� 319
TimeEntries� 320

Verifying Third Normal Form� 321
Summary� 323

PART 4: EXAMPLE PROGRAMS

CHAPTER 15: EXAMPLE OVERVIEW� 327

Tool Choices� 327
Jupyter Notebook� 329

Contents

xviii

Visual Studio� 331
Database Adapters� 332

Packages in Jupyter Notebook� 333
Packages in Visual Studio� 334

Program Passwords� 336
Summary� 336

CHAPTER 16: MariaDB IN PYTHON� 339

Install MariaDB� 340
Run HeidiSQL� 340
Create the Program� 343

Install pymysql� 344
Create the Database� 344
Define Tables� 346
Create Data� 348
Fetch Data� 350

Summary� 352

CHAPTER 17: MariaDB IN C#� 355

Create the Program� 355
Install MySqlConnector� 356
Create the Database� 356
Define Tables� 358
Create Data� 360
Fetch Data� 364

Summary� 366

CHAPTER 18: PostgreSQL IN PYTHON� 369

Install PostgreSQL� 370
Run pgAdmin� 371

Design the Database� 371
Create a User� 371
Create the Database� 373
Define the Tables� 374

Define the customers Table� 374
Define the orders Table� 376
Define the order_items Table� 377

Create the Program� 378
Install Psycopg� 379

Contents

xix

Connect to the Database� 379
Delete Old Data� 380
Create Customer Data� 380
Create Order Data� 382
Create Order Item Data� 383
Close the Connection� 384
Perform Queries� 384

Summary� 386

CHAPTER 19: PostgreSQL IN C#� 389

Create the Program� 389
Install Npgsql� 389
Connect to the Database� 390
Delete Old Data� 391
Create Customer Data� 392
Create Order Data� 393
Create Order Item Data� 395
Display Orders� 396

Summary� 399

CHAPTER 20: Neo4j AuraDB IN PYTHON� 401

Install Neo4j AuraDB� 402
Nodes and Relationships� 404
Cypher� 404
Create the Program� 405

Install the Neo4j Database Adapter� 405
Action Methods� 405

delete_all_nodes� 406
make_node� 407
make_link� 407
execute_node_query� 408
find_path� 409

Org Chart Methods� 410
build_org_chart� 410
query_org_chart� 411

Main Program� 412
Summary� 414

Contents

xx

CHAPTER 21: Neo4j AuraDB IN C#� 417

Create the Program� 418
Install the Neo4j Driver� 418
Action Methods� 419

DeleteAllNodes� 419
MakeNode� 420
MakeLink� 421
ExecuteNodeQuery� 422
FindPath� 422

Org Chart Methods� 423
BuildOrgChart� 424
QueryOrgChart� 424

Main� 426
Summary� 428

CHAPTER 22: MongoDB ATLAS IN PYTHON� 431

Not Normal but Not Abnormal� 432
XML, JSON, and BSON� 432
Install MongoDB Atlas� 434
Find the Connection Code� 436
Create the Program� 439

Install the PyMongo Database Adapter� 439
Helper Methods� 440

person_string� 440
connect_to_db� 441
delete_old_data� 442
create_data� 442
query_data� 444

Main Program� 449
Summary� 450

CHAPTER 23: MongoDB ATLAS IN C#� 453

Create the Program� 454
Install the MongoDB Database Adapter� 454
Helper Methods� 454

PersonString� 455
DeleteOldData� 456
CreateData� 457
QueryData� 458

Contents

xxi

Main Program� 462
Summary� 465

CHAPTER 24: APACHE IGNITE IN PYTHON� 467

Install Apache Ignite� 468
Start a Node� 468

Without Persistence� 469
With Persistence� 470

Create the Program� 470
Install the pyignite Database Adapter� 471
Define the Building Class� 471
Save Data� 471
Read Data� 473
Demonstrate Volatile Data� 473
Demonstrate Persistent Data� 474

Summary� 474

CHAPTER 25: APACHE IGNITE IN C#� 477

Create the Program� 477
Install the Ignite Database Adapter� 478
The Main Program� 479
The Building Class� 480
The WriteData Method� 480
The ReadData Method� 482
Demonstrate Volatile Data� 483
Demonstrate Persistent Data� 483

Summary� 483

PART 5: ADVANCED TOPICS

CHAPTER 26: INTRODUCTION TO SQL� 489

Background� 491
Finding More Information� 491
Standards� 492
Multistatement Commands� 493
Basic Syntax� 495
Command Overview� 495
Create Table� 498
Create Index� 503

Contents

xxii

Drop� 504
Insert� 504
Select� 506

SELECT Clause� 506
FROM Clause� 507
WHERE Clause� 511
GROUP BY Clause� 511
ORDER BY Clause� 512

Update� 513
Delete� 514
Summary� 515

CHAPTER 27: BUILDING DATABASES WITH SQL SCRIPTS� 519

Why Bother with Scripts?� 519
Script Categories� 520

Database Creation Scripts� 520
Basic Initialization Scripts� 520
Data Initialization Scripts� 520
Cleanup Scripts� 521
Saving Scripts� 521

Ordering SQL Commands� 522
Summary� 531

CHAPTER 28: DATABASE MAINTENANCE� 533

Backups� 533
Data Warehousing� 537
Repairing the Database� 538
Compacting the Database� 538
Performance Tuning� 538
Summary� 542

CHAPTER 29: DATABASE SECURITY� 545

The Right Level of Security� 545
Passwords� 546

Single-Password Databases� 546
Individual Passwords� 546
Operating System Passwords� 547
Good Passwords� 547

Privileges� 548

Contents

xxiii

Initial Configuration and Privileges� 553
Too Much Security� 553
Physical Security� 554
Summary� 555

APPENDIX A: EXERCISE SOLUTIONS� 557

APPENDIX B: SAMPLE RELATIONAL DESIGNS� 649

GLOSSARY� 671

INDEX� 683

INTRODUCTION

It has been estimated that more than 80 percent of all computer programming is database-related.
This is certainly easy to believe. After all, a database can be a powerful tool for doing exactly what
computer programs do best: store, manipulate, and display data.

Even many programs that seem at first glance to have little to do with traditional business-oriented
data use databases to make processing easier. In fact, looking back on 40 some years of software
development experience, I’m hard-pressed to think of a single nontrivial application that I’ve worked
on that didn’t use some kind of database.

Not only do databases play a role in many applications, but they often play a critical role. If the data
is not properly stored, it may become corrupted, and the program will be unable to use it meaning-
fully. If the data is not properly organized, the program may be unable to find what it needs in a
reasonable amount of time.

Unless the database stores its data safely and effectively, the application will be useless no matter how
well-designed the rest of the system may be. The database is like the foundation of a building;
without a strong foundation, even the best crafted building will fail, sometimes spectacularly (the
Leaning Tower of Pisa notwithstanding).

With such a large majority of applications relying so heavily on databases, you would expect every-
one involved with application development to have a solid, formal foundation in database design and
construction. Everyone, including database designers, application architects, programmers, database
administrators, and project managers, should ideally understand what makes a good database design.
Even an application’s key customers and users could benefit from understanding how data-
bases work.

Sadly, that is usually not the case. Many IT professionals have learned what they know about
databases through rumor, trial-and-error, tarot cards, and painful experience. Over the years, some
develop an intuitive feel for what makes a good database design, but they may still not understand
the reasons a design is good or bad, and they may leave behind a trail of rickety, poorly constructed
programs built on shaky database foundations.

This book provides the tools you need to design a database. It explains how to determine what
should go in a database and how a database should be organized to ensure data integrity and a
reasonable level of performance. It explains techniques for designing a database that is strong enough
to store data safely and consistently, flexible enough to allow the application to retrieve the data it
needs quickly and reliably, and adaptable enough to accommodate a reasonable amount of change.

With the ideas and techniques described in this book, you will be able to build a strong foundation
for database applications.

xxvi

Introduction

WHO THIS BOOK IS FOR

This book is intended for IT professionals and students who want to learn how to design, analyze,
and understand databases. The material will benefit those who want a better high-level understanding
of databases such as proposal managers, architects, project managers, and even customers. The
material will also benefit those who will actually design, build, and work with databases such as
database designers, database administrators, and programmers. In many projects, these roles overlap
so the same person may be responsible for working on the proposal, managing part of the project,
and designing and creating the database.

This book is aimed at readers of all experience levels. It does not assume that you have any previous
experience with databases or programs that use them. It doesn’t even assume that you have experi-
ence with computers. All you really need is a willingness and desire to learn.

WHAT THIS BOOK COVERS

This book explains database design. It tells how to plan a database’s structure so the database will be
robust, resistant to errors, and flexible enough to accommodate a reasonable amount of future
change. It explains how to discover database requirements, build data models to study data needs,
and refine those models to improve the database’s effectiveness.

The book solidifies these concepts by working through a detailed example that designs a (sort of)
realistic database. Later chapters explain how to actually build databases using a few different
database products. The book finishes by describing topics you need to understand to keep a database
running effectively such as database maintenance and security.

WHAT YOU NEED TO USE THIS BOOK

This book explains database design. It tells how to determine what should go in a database and how
the database should be structured to give the best results.

This book does not focus on actually creating the database. The details of database construction are
different for different database tools, so to remain as generally useful as possible, this book doesn’t
concentrate on any particular database system. You can apply most of the techniques described here
equally to whatever database tool you use, whether it’s MariaDB, PostgreSQL, SQL Server, or some
other database product.

NOTE  Most database products include free editions that you can use for
smaller projects. For example, SQL Server Express Edition, Oracle Express
Edition, and MariaDB Community Server are all free.

xxvii

Introduction

To remain database-neutral, most of the book does not assume you are using a particular database, so
you don’t need any particular software or hardware. To work through the exercises, all you need is a
pencil and some paper. You are welcome to type solutions into your computer if you like, but you may
actually find working with pencil and paper easier than using a graphical design tool to draw pictures,
at least until you are comfortable with database design and are ready to pick a computerized
design tool.

Chapters 16 through 25 build example databases using particular database offerings, so their material
is tied to the databases that they demonstrate. Chapter 15, “Example Overview,” introduces those
chapters and lists the databases that they use.

To experiment with the SQL database language described in Chapter 26, “Introduction to SQL,”
and Chapter 27, “Building Databases with SQL Scripts,” you need any database product that
supports SQL (that includes pretty much all relational databases) running on any operat-
ing system.

HOW THIS BOOK IS STRUCTURED

The chapters in this book are divided into five parts plus appendixes. The chapters in each part are
described here. If you have previous experience with databases, you can use these descriptions to
decide which chapters to skim and which to read in detail.

Part I: Introduction to Databases and Database Design
The chapters in this part of the book provide background that is necessary to understand the chapters
that follow. You can skim some of this material if it is familiar to you, but don’t take it too lightly. If
you understand the fundamental concepts underlying database design, it will be easier to understand
the point behind important design concepts presented later.

Chapter 1, “Database Design Goals,” explains the reasons people and organizations use databases. It
explains a database’s purpose and conditions that it must satisfy to be useful. This chapter also
describes the basic ACID (Atomicity, Consistency, Isolation, Durability) and CRUD (Create, Read,
Update, Delete) features that any good database should have. It explains in high-level general terms
what makes a good database and what makes a bad database.

Chapter 2, “Relational Overview,” explains basic relational database concepts such as tables, rows,
and columns. It explains the common usage of relational database terms in addition to the more
technical terms that are sometimes used by database theorists. It describes different kinds of con-
straints that databases use to guarantee that the data is stored safely and consistently.

Chapter 3, “NoSQL Overview,” explains the basics of NoSQL databases, which are growing quickly
in popularity. Those databases include document, key-value, column-oriented, and graph databases.
Both relational and NoSQL databases can run either locally or in the cloud, but many NoSQL
databases are more cloud-oriented, largely because they are newer technology so they’re
cloud-native.

xxviii

Introduction

Part II: Database Design Process and Techniques
The chapters in this part of the book discuss the main pieces of relational database design. They
explain how to understand what should be in the database, develop an initial design, separate
important pieces of the database to improve flexibility, and refine and tune the design to provide the
most stable and useful design possible.

Chapter 4, “Understanding User Needs,” explains how to learn about the users’ needs and gather user
requirements. It tells how to study the users’ current operations, existing databases (if any), and
desired improvements. It describes common questions that you can ask to learn about users’ opera-
tions, desires, and needs, and how to build the results into requirements documents and specifications.
This chapter explains what use cases are and shows how to use them and the requirements to guide
database design and to measure success.

Chapter 5, “Translating User Needs into Data Models,” introduces data modeling. It explains how to
translate the user’s conceptual model and the requirements into other, more precise models that
define the database design rigorously. This chapter describes several database modeling techniques,
including user-interface models, semantic object models, entity-relationship diagrams, and rela-
tional models.

Chapter 6, “Extracting Business Rules,” explains how a database can handle business rules. It
explains what business rules are, how they differ from database structure requirements, and how you
can identify business rules. This chapter explains the benefits of separating business rules from the
database structure and tells how to achieve that separation.

Chapter 7, “Normalizing Data,” explains one of the most important tools in relational database
design: normalization. Normalization techniques allow you to restructure a database to increase
its flexibility and make it more robust. This chapter explains various forms of normalization,
emphasizing the stages that are most common and important: first, second, and third normal
forms (1NF, 2NF, and 3NF). It explains how each of these kinds of normalization helps prevent
errors and tells why it is sometimes better to leave a database slightly less normalized to improve
performance.

Chapter 8, “Designing Databases to Support Software,” explains how databases fit into the larger
context of application design and the development life cycle. This chapter explains how later develop-
ment depends on the underlying database design. It discusses multi-tier architectures that can help
decouple the application and database so there can be at least some changes to either without
requiring changes to both.

Chapter 9, “Using Common Design Patterns,” explains some common patterns that are useful in
many applications. Some of these techniques include implementing various kinds of relationships
among objects, storing hierarchical and network data, recording temporal data, and logging
and locking.

Chapter 10, “Avoiding Common Design Pitfalls,” explains some common design mistakes that
occur in database development. It describes problems that can arise from insufficient planning,
incorrect normalization, and obsession with ID fields and performance.

xxix

Introduction

Part III: A Detailed Case Study
If you follow all of the examples and exercises in the earlier chapters, by this point you will have seen
all of the major steps for producing a good database design. However, it’s often useful to see all the
steps in a complicated process put together in a continuous sequence. The chapters in this part of the
book walk through a detailed case study following all the phases of database design for the fictitious
Pampered Pet database.

Chapter 11, “Defining User Needs and Requirements,” walks through the steps required to analyze the
users’ problem, define requirements, and create use cases. It describes interviews with fictitious
customers that are used to identify the application’s needs and translate them into database
requirements.

Chapter 12, “Building a Data Model,” translates the requirements gathered in the previous chapter
into a series of data models that precisely define the database’s structure. This chapter builds user
interface models, entity-relationship diagrams, semantic object models, and relational models to refine
the database’s initial design. The final relational models match the structure of a relational database
fairly closely, so they are easy to implement.

Chapter 13, “Extracting Business Rules,” identifies the business rules embedded in the relational
model constructed in the previous chapter. It shows how to extract those rules in order to separate
them logically from the database’s structure. This makes the database more robust in the face of
future changes to the business rules.

Chapter 14, “Normalizing and Refining,” refines the relational model developed in the previous
chapter by normalizing it. It walks through several versions of the database that are in different normal
forms. It then selects the degree of normalization that provides a reasonable trade-off between robust
design and acceptable performance.

Part IV: Example Programs
Though this book focuses on abstract database concepts that do not depend on a particular database
product, it’s also worth spending at least some time on more concrete implementation issues. The
chapters in this part of the book describe some of those issues and explain how to build simple
example programs that demonstrate a few different database products.

Chapter 15, “Example Overview,” provides a roadmap for the chapters that follow. It tells which
chapters use which databases and how to get the most out of those chapters. Chapters 16 through 25
come in pairs, with the first describing an example in Python and the second describing a similar
(although not always identical) program in C#.

Chapters 16 and 17 describe examples that use the popular MariaDB column-oriented relational
database running on the local machine.

Chapters 18 and 19 demonstrate the (also popular) PostgreSQL database, also running on the
local machine.

xxx

Introduction

Chapters 20 and 21 show how to use the Neo4j AuraDB graph database running in the cloud.

Chapters 22 and 23 describe examples that use the MongoDB Atlas document database, also running
in the cloud.

Chapters 24 and 25 demonstrate the Apache Ignite key-value database running locally.

These examples are just intended to get you started. They are relatively simple examples and they do
not show all of the possible combinations. For example, you can run an Apache Ignite database in the
cloud if you like; there were just too many combinations to cover them all in this book.

Part V: Advanced Topics
Although this book does not assume you have previous database experience, that doesn’t mean it
cannot cover some more advanced subjects. The chapters in this part of the book explain some more
sophisticated topics that are important but not central to database design.

Chapter 26, “Introduction to SQL,” provides an introduction to SQL (Structured Query Language). It
explains how to use SQL commands to add, insert, update, and delete data. By using SQL, you can
help insulate a program from the idiosyncrasies of the particular database product that it uses to
store data.

Chapter 27, “Building Databases with SQL Scripts,” explains how to use SQL scripts to build a
database. It explains the advantages of this technique, such as the ability to create scripts to initialize
a database before performing tests. It also explains some of the restrictions on this method, such as
the fact that the user may need to create and delete tables in a specific order to satisfy table
relationships.

Chapter 28, “Database Maintenance,” explains some of the database maintenance issues that are part
of any database application. Though performing and restoring backups, compressing tables, rebuild-
ing indexes, and populating data warehouses are not strictly database design tasks, they are essential
to any working application.

Chapter 29, “Database Security,” explains database security issues. It explains the kinds of security
that some database products provide. It also explains some additional techniques that can enhance
database security such as using database views to appropriately restrict the users’ access to data.

Appendixes
The book’s appendixes provide additional reference material to supplement the earlier chapters.

Appendix A, “Exercise Solutions,” gives solutions to the exercises at the end of most of the book’s
chapters so that you can check your progress as you work through the book.

Appendix B, “Sample Relational Designs,” shows some sample designs for a variety of common
database situations. These designs store information about such topics as books, movies, documents,
customer orders, employee timekeeping, rentals, students, teams, and vehicle fleets.

xxxi

Introduction

The Glossary provides definitions for useful database and software development terms. The Glossary
includes terms defined and used in this book in addition to a few other useful terms that you may
encounter while reading other database material.

HOW TO USE THIS BOOK

Because this book is aimed at readers of all experience levels, you may find some of the material
familiar if you have previous experience with databases. In that case, you may want to skim chapters
covering material that you already thoroughly understand.

If you are familiar with relational databases, you may want to skim Chapter 1, “Database Design
Goals,” and Chapter 2, “Relational Overview.” Similarly if you have experience with NoSQL data-
bases, you may want to skip Chapter 3, “NoSQL Overview.”

If you have previously helped write project proposals, you may understand some of the questions you
need to ask users to properly understand their needs. In that case, you may want to skim Chapter 4,
“Understanding User Needs.”

If you have built databases before, you may understand at least some of the data normalization
concepts explained in Chapter 7, “Normalizing Data.” This is a complex topic, however, so I recom-
mend that you not skip this chapter unless you really know what you’re doing.

If you have extensive experience with SQL, you may want to skim Chapter 26, “Introduction to
SQL.” (Many developers who have used but not designed databases fall into this category.)

In any case, I strongly recommend that you at least skim the material in every chapter to see if there
are any new concepts you can pick up along the way. At least look at the Exercises at the end of each
chapter before you decide that you can safely skip to the next. If you don’t know how to outline the
solutions to the Exercises, then you should consider looking at the chapter more closely.

Different people learn best in different ways. Some learn best by listening to lecturers, others by
reading, and others by doing. Everyone learns better by combining learning styles. You will get the
most from this book if you read the material and then work through the Exercises. It’s easy to think
to yourself, “Yeah, that makes sense” and believe you understand the material, but working through
some of the Exercises will help solidify the material in your mind. Doing so may also help you see
new ways that you can apply the concepts covered in the chapter.

NOTE  Normally, when I read a new technical book, I work through every
example, modifying the problems to see what happens if I try different things
not covered by the author. I work through as many questions and exercises as I
can until I reach the point where more examples don’t teach me anything new
(or I’m tired of breaking my system and having to reinstall things). Then I move
on. It’s one thing to read about a concept in the chapter; it’s another to try to
apply it to data that is meaningful to you.

xxxii

Introduction

After you have learned the ideas in the book, you can use it for a reference. For example, when you
start a new project, you may want to refer to Chapter 4, “Understanding User Needs,” to refresh your
memory about the kinds of questions you should ask users to discover their true needs.

Visit the book’s website to look for updates and addendums. If readers find typographical errors or
places where a little additional explanation may help, I’ll post updates on the website.

Finally, if you get stuck on a really tricky concept and need a little help, email me at
RodStephens@csharphelper.com and I’ll try to help you out.

NOTE TO INSTRUCTORS

Database programming is boring. Maybe not to you and me, who have discovered the ecstatic joy of
database design, the thrill of normalization, and the somewhat risqué elation brought by slightly
denormalizing a database to achieve optimum performance. But let’s face it, to a beginner, database
design and development can be a bit dull.

There’s little you can do to make the basic concepts more exciting, but you can do practically
anything with the data. At some point it’s useful to explain how to design a simple inventory system,
but that doesn’t mean you can’t use other examples designed to catch students’ attention. Data that
relates to the students’ personal experiences or that is just plain outrageous keeps them awake and
alert (and most of us know that it’s easier to teach students who are awake).

The examples in this book are intended to demonstrate the topic at hand but not all of them are
strictly business-oriented. I’ve tried to make them cover a wide variety of topics from serious to silly.
To keep your students interested and alert, you should add new examples from your personal
experiences and from your students’ interests.

I’ve had great success in my classroom using examples that involve sports teams (particularly local
rivalries), music (combining classics such as Bach, Beethoven, and Tone Loc), the students in the class
(but be sure not to put anyone on the spot), television shows and stars, comedians, and anything else
that interests the students.

For exercises, encourage students to design databases that they will find personally useful. I’ve had
students build databases that track statistics for the players on their favorite football teams, inventory
their DVD or CD collections, file and search recipe collections, store data on “Magic: The Gathering”
trading cards, track role-playing game characters, record information about classic cars, and schedule
athletic tournaments. (The tournament scheduler didn’t work out too well—the scheduling algorithms
were too tricky.) One student even built a small but complete inventory application for his mother’s
business that she actually found useful. I think he was as shocked as anyone to discover he’d learned
something practical.

When students find an assignment interesting and relevant, they become emotionally invested and will
apply the same level of concentration and intensity to building a database that they normally reserve
for console gaming, Star Wars, and World of Warcraft. They may spend hours crafting a database to
track WoW alliances just to fulfill a 5-minute assignment. They may not catch every nuance of
domain/key normal form, but they’ll probably learn a lot about building a functional database.

mailto:RodStephens@csharphelper.com

xxxiii

Introduction

NOTE TO STUDENTS

If you’re a student and you peeked at the previous section, “Note to Instructors,” shame on you! If
you didn’t peek, do so now.

Building a useful database can be a lot of work, but there’s no reason it can’t be interesting and useful
to you when you’re finished. Early in your reading, pick some sort of database that you would find
useful (see the previous section for a few ideas) and think about it as you read through the text. When
the book talks about creating an initial design, sketch out a design for your database. When the book
explains how to normalize a database, normalize yours. As you work through the exercises, think
about how they would apply to your dream database.

Don’t be afraid to ask your instructor if you can use your database instead of one suggested by the
book for a particular assignment (unless you have one of those instructors who hand out extra work
to anyone who crosses their path; in that case, keep your head down). Usually an instructor’s thought
process is quite simple: “I don’t care what database you use as long as you learn the material.” Your
instructor may want your database to contain several related tables so that you can create the
complexity needed for a particular exercise, but it’s usually not too hard to make a database compli-
cated enough to be interesting.

When you’re finished, you will hopefully know a lot more about database design than you do now,
and if you’re persistent, you might just have a database that’s actually good for something. Hopefully
you’ll also know how to design other useful databases in the future. (And when you’re finished, email
me at RodStephens@csharphelper.com and let me know what you built!)

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Activities are exercises that you should work through, following the text in the book.

1.	 They usually consist of a set of steps.

2.	 Each step has a number.

3.	 Follow the steps with your copy of the database.

NOTE  Tips, hints, tricks, and asides to the current discussion are offset and
placed in italics like this.

continues

mailto:RodStephens@csharphelper.com

xxxiv

Introduction

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually or to use the source code files that accompany the book. All of the source code used in this
book is available for download at www.wiley.com/go/beginningdbdesign2e.

CONTACTING THE AUTHOR

If you have questions, suggestions, comments, want to swap cookie recipes, or just want to say “Hi,”
email me at RodStephens@csharphelper.com. I can’t promise that I’ll be able to help you with
every problem, but I do promise to try.

DISCLAIMER

Many of the examples in this book were chosen for interest or humorous effect. They are not intended
to disparage anyone. I mean no disrespect to police officers (or anyone else who regularly carries a
gun), plumbers, politicians, jewelry store owners, street luge racers (or anyone else who wears helmets
and Kevlar body armor to work), or college administrators. Or anyone else for that matter.

Well, maybe politicians.

How It Works

After most activity instruction sections, the process you’ve stepped through is explained in detail.

As for styles in the text:

➤➤ We highlight new terms and important words when we introduce them.

➤➤ We show keyboard strokes like this: Ctrl+A.

➤➤ We show filenames, URLs, and code within the text like so: SELECT * FROM Students.

➤➤ We present blocks of code like this:

 We use a monofont type with no highlighting for code examples.

(continued)

http://www.wiley.com/go/beginningdbdesign2e
mailto:RodStephens@csharphelper.com

Introduction to Databases and
Database Design

PART 1

➤➤ Chapter 1: Database Design Goals

➤➤ Chapter 2: Relational Overview

➤➤ Chapter 3: NoSQL Overview

2  ❘  PART 1  Introduction to Databases and Database Design

The chapters in this part of the book provide background that is useful when studying data-
base design.

Chapter 1 explains the reasons why database design is important. It discusses the goals that you
should keep in mind while designing databases. If you keep those goals in mind, then you can stay
focused on the end result and not become bogged down in the minutiae of technical details. If you
understand those goals, then you will also know when it might be useful to bend the rules a bit.

Chapter 2 provides background on relational databases. It explains common relational database
terms and concepts that you need to understand for the chapters that follow. You won’t get as much
out of the rest of the book if you don’t understand the terminology.

Chapter 3 describes NoSQL databases. While this book (and most other database books) focuses on
relational databases, there are other kinds of databases that are better suited to some tasks. NoSQL
databases provide some alternatives that may work better for you under certain circumstances. (I
once worked on a 40-developer project that failed largely because it used the wrong kind of database.
Don’t let that happen to you!)

Even if you’re somewhat familiar with databases, give these chapters at least a quick glance to ensure
that you don’t miss anything important. Pay particular attention to the terms described in Chapter 2,
because you’ll need to know them later.

Database Design Goals
Using modern database tools, just about anyone can build a database. The question is, will the
resulting database be useful?
A database won’t do you much good if you can’t get data out of it quickly, reliably, and
consistently. It won’t be useful if it’s full of incorrect or contradictory data, nor will it be useful
if it is stolen, lost, or corrupted by data that was only half written when the system crashed.

You can address all of these potential problems by using modern database tools, a good
database design, and a pinch of common sense, but only if you understand what those problems
are so you can avoid them.

The first step in the quest for a useful database is understanding database goals. What should a
database do? What makes a database useful and what problems can it solve? Working with a
powerful database tool without goals is like flying a plane through clouds without a compass—
you have the tools you need but no sense of direction.

This chapter describes the goals of database design. By studying information containers, such as
files that can play the role of a database, the text defines properties that good databases have
and problems that they should avoid.

In this chapter, you will learn about the following:

➤➤ Why a good database design is important

➤➤ The strengths and weaknesses of various kinds of information containers that can act
as databases

➤➤ How computerized databases can benefit from those strengths and avoid those
weaknesses

➤➤ How good database design helps achieve database goals

➤➤ What CRUD, ACID, and BASE are, and why they are relevant to database design

1

4  ❘  CHAPTER 1   Database Design Goals

THE IMPORTANCE OF DESIGN

Forget for a moment that this book is about designing databases and consider software design in
general. Software design plays a critical role in software development. The design lays out the general
structure and direction that future development will take. It determines which parts of the system will
interact with other parts. It decides which subsystems will provide support for other pieces of the
application.

If an application’s underlying design is flawed, the system as a whole is at risk. Bad assumptions in
the design creep into the code at the application’s lowest levels, resulting in flawed subsystems.
Higher-level systems built on those subsystems inherit those design flaws, and soon their code is
corrupted, too.

Sometimes, a sort of decay pervades the entire system and nobody notices until relatively late in the
project. The longer the project continues, the more entrenched the incorrect assumptions become, and
the more reluctant developers are to scrap the whole design and start over. The longer problems
remain in the system, the harder they are to remove. At some point, it might be easier to throw
everything away and start over from scratch, a decision that few managers will want to present to
upper management.

Building an application is often compared to building a house or skyscraper. You probably wouldn’t
start building a multibillion-dollar skyscraper without a comprehensive design that is based on
well-established architectural principles. Unfortunately, software developers often rush off to start
coding as soon as they possibly can because coding is more fun and interesting than design is. Coding
also lets developers tell management and customers how many lines of code they have written, so it
seems like they are making progress even if the lines of code are corrupted by false assumptions. Only
later do they realize that the underlying design is flawed, the code they wrote is worthless, and the
project is in serious trouble.

SPACE SPAT

An engineer friend of mine was working on a really huge satellite project. After a while, the
engineers all realized that the project just wasn’t feasible given the current state of technology
and the design. Eventually, the project manager was forced to admit this to upper management
and he was fired. The new project manager stuck it out for a while and then he, too, was forced
to confess to upper management that the project was unfeasible. He, too, was fired.

For a while, this process continued—with a new manager taking over, realizing the hopelessness of
the design, and being fired. That is, until eventually even upper management had to admit the pro-
ject wasn’t going to work out and the whole thing collapsed.

They could have saved time, money, and several careers if they had spent more time up-front on the
design and either fixed the problems or realized right away that the project wasn’t going to work
and scrapped it at the start.

The Importance of Design  ❘  5

Now, let’s get back to database design. Few parts of an application’s design are as critical as the
database’s design. The database is the repository of the information that the rest of the application
manages and displays to the users. If the database doesn’t store the right data, doesn’t keep the data
safe, or doesn’t let the application find the data it needs, then the application has little chance for
success. Here, the garbage-in, garbage-out (GIGO) principle is in full effect. If the underlying data is
unsound, it doesn’t matter what the application does with it; the results will be suspect at best.

For example, imagine that you’ve built an order-tracking system that can quickly fetch information
about a customer’s past orders. Unfortunately, every time you ask the program to fetch a certain
customer’s records, it returns a slightly different result. Although the program can find data quickly,
the results are not trustworthy enough to be usable.

For another example, imagine that you have built an amazing program that can track the thousands
of tasks that make up a single complex job, such as building a cruise liner or passenger jet. It can
track each task’s state of completion, determine when you need to order new parts for them to be
ready for future construction phases, and can even determine the present value of future purchases so
you can decide whether it is better to buy parts now or wait until they are needed. Unfortunately, the
program takes hours to recalculate the complex task schedule and pricing details. Although the
calculations are correct, they are so slow that users cannot reasonably make any changes. Changing
the color of the fabric of a plane’s seats or the tile used in a cruise liner’s hallways could delay the
whole project. (I once worked on a project with a similar issue. It worked, but it was so slow that it
became a serious problem.)

For a final example, suppose you have built an efficient subscription application that lets customers
subscribe to your company’s quarterly newsletters, data services, and sarcastic demotivational quote
of the day. It lets you quickly find and update any customer’s subscriptions, and it always consistently
shows the same values for a particular customer. Unfortunately, when you change the price of one of
your publications, you find that not all of the customers’ records show the updated price. Some
customers’ subscriptions are at the new rate, some are at the old rate, and some seem to be at a rate
you’ve never seen before. (This example isn’t as far-fetched as it may seem. Some systems allow you
to offer sale prices or special incentives to groups of customers, or they allow sales reps to offer
special prices to particular customers. That kind of system requires careful design if you want to be
able to do things like change standard prices without messing up customized pricing.)

Poor database design can lead to these and other annoying and potentially expensive scenarios. A
good design creates a solid foundation on which you can build the rest of the application.

Experienced developers know that the longer a bug remains in a system, the harder it is to find and
fix. From that it logically follows that it is extremely important to get the design right before you start
building on it.

Database design is no exception. A flawed database design can doom a project to failure before it has
begun as surely as ill-conceived software architecture, poor implementation, or incompetent
programming can.

6  ❘  CHAPTER 1   Database Design Goals

This is a pretty broad definition and includes a lot of physical objects that most people don’t think of
as modern databases. For example, Figure 1.1 shows a box full of business cards, a notebook, a filing
cabinet full of customer records, and your brain, all of which fit this definition. Each of these physical
databases has advantages and disadvantages that can give insight into the features that you might like
in a computer database.

A box of business cards is useful as long as it doesn’t contain too many cards. You can find a particu-
lar piece of data (for example, the phone number for your favorite Canadian restaurant) by looking
through all the cards. You can easily expand the database by shoving more cards into the box, at least
up to a point. If you have more than a dozen or so business cards, finding a particular card can be
time consuming. You can even rearrange the cards a bit to improve performance for cards you use
often. Each time you use a card, you can move it to the front of the box. Over time, those that are
used most often will migrate to the front.

A notebook (the cardboard and paper kind, not the small laptop kind) is small, easy to use, easy to
carry, doesn’t require electricity, and doesn’t need to boot before you can use it. A notebook database

INFORMATION CONTAINERS

What is a database? This may seem like a trivial question, but if you take it seriously the result can be
pretty enlightening. By studying the strengths and weaknesses of some physical objects that meet the
definition of a database, you can learn about the features that you might like a computerized
database to have.

FIGURE 1.1 

DEFINITION  A database is a tool that stores data and lets you create, read,
update, and delete the data in some manner.

Information Containers  ❘  7

is also easily extensible because you can buy another notebook to add to your collection when the
first one is full. However, a notebook’s contents are arranged sequentially. If you want to find
information about a particular topic, you’ll have to look through the pages one at a time until you
find what you want. The more data you have, the harder this kind of search becomes.

A filing cabinet can store a lot more information than a notebook, and you can easily expand the
database by adding more files or cabinets. Finding a particular piece of information in the filing
cabinet can be easier than finding it in a notebook, as long as you are searching for the type of data
used to arrange the records. If the filing cabinet is full of customer information sorted by customer
name, and you want to find a particular customer’s data, then you’re in luck. If you want to find all
of the customers who live in a certain city, you’ll have to dig through the files one at a time.

Your brain is the most sophisticated database ever created. It can store an incredible amount of data
and allows you to retrieve a particular piece of data in several different ways. For example, right now
you could probably easily answer the following questions about the restaurants that you visit
frequently:

➤➤ Which is closest to your current location?

➤➤ Which has the best desserts?

➤➤ Which has the best service?

➤➤ Which is least expensive?

➤➤ Which is the best for a business lunch?

➤➤ Which is your overall favorite?

➤➤ Why don’t we go there tonight?

Your brain provides many different ways you can access the same restaurant information. You can
search based on a variety of keys (such as location, quality of dessert, expense, and so forth). To
answer these questions with a box of business cards, a notebook, or a filing cabinet would require a
long and grueling search.

Still your brain has some drawbacks, at least as a database. Most notably it forgets. You may be able
to remember an incredible number of things, but some become less reliable or disappear completely
over time. Do you remember the names of all of your elementary school teachers? I don’t. (I don’t
remember my own teachers’ names, much less yours!)

Your brain also gets tired, and when it is tired it is less accurate.

Although your brain is good at certain tasks, such as recognizing faces or picking restaurants, it is not
so good at other tasks like providing an accurate list of every item a particular customer purchased in
the past year. Those items have less emotional significance than, for example, your spouse’s name, so
they’re harder to remember.

All of these information containers (business cards, notebooks, filing cabinets, and your brain) can
become contaminated with misleading, incorrect, and contradictory information. If you write
different versions of the same information in a notebook, the data won’t be consistent. Later when
you try to look up the data, you may find either version first and may not even remember that there’s

8  ❘  CHAPTER 1   Database Design Goals

another version. (Your brain can become especially cluttered with inconsistent and contradictory
information, particularly if you listen to politicians during an election year.)

The following section summarizes some of the strengths and weaknesses of these information
containers.

STRENGTHS AND WEAKNESSES OF INFORMATION
CONTAINERS

By understanding the strengths and weaknesses of information containers like those described in the
previous section, you can learn about features that would be useful in a computerized database. So,
what are some of those strengths and weaknesses?

The following list summarizes the advantages of some information containers:

➤➤ None of these databases require electricity so they are safe from power failures (although
your brain requires food; as the dormouse said, feed your head).

➤➤ These databases keep data fairly safe and permanent (barring fires and memory loss). The
data doesn’t just disappear.

➤➤ These databases (excluding your brain) are inexpensive and easy to buy.

➤➤ These databases have simple user interfaces so that almost anyone can use them.

➤➤ Using these databases, it’s fairly easy to add, edit, and remove data.

➤➤ The filing cabinet lets you quickly locate data if you search for it in the same way it is
arranged (for example, by customer name).

➤➤ Your brain lets you find data by using different keys (for example, by location, cost, or
quality of service).

➤➤ All of these databases allow you to find every piece of information that they contain,
although it may take a while to dig through it all.

➤➤ All of these databases (except possibly your brain) provide consistent results as long as the
facts they store are consistent. For example, two people using the same notebook will find the
same data. Similarly if you look at the same notebook at a later time, it will show the same
data you saw before (if it hasn’t been modified).

➤➤ All of these databases except the filing cabinet are portable.

➤➤ Your brain can perform complex calculations, at least of a limited type and number.

➤➤ All of these databases provide atomic transactions.

The final advantage is a bit more abstract than the others so it deserves some additional explanation.
An atomic transaction is a possibly complex series of actions that is considered to be a single
operation by those who are not involved directly in performing the transaction.

The classic example is transferring money from one bank account to another. Suppose Alice writes
Bob a check for $100 and you need to transfer the money between their accounts. You pick up the

Desirable Database Features  ❘  9

account book, subtract $100 from Alice’s record, add $100 to Bob’s record, and then put the
notebook down. Someone else who uses the notebook might see it before the transaction (when Alice
has the $100) or after the transaction (when Bob has the $100), but they won’t see it during the
transaction where the $100 has been subtracted from Alice but not yet given to Bob. The office
bullies aren’t allowed to grab the notebook from your hands when you’re halfway through and play
keep-away. It’s an all-or-nothing transaction.

In addition to their advantages, information containers like notebooks and filing cabinets have some
disadvantages. It’s worth studying these disadvantages so that you can try to avoid them when you
build computerized databases.

The following list summarizes some of the disadvantages that these information containers have:

➤➤ All of these databases can hold incomplete, incorrect, or contradictory data.

➤➤ Some of them are easy to lose or steal. Someone could grab your notebook while you’re
eating lunch or read over your shoulder on the bus. You could even forget your notebook at
the security counter as you dash to catch your flight.

➤➤ In all of these databases, correcting large errors in the data can be difficult. For example, it’s
easy to use a pen to change one person’s address in an address notebook. It’s much harder to
update hundreds of addresses if a new city is created in your area. (This recently happened
near where I live.) Such a circumstance might require a tedious search through a set of
business cards, a notebook, or a filing cabinet. It may be years before your brain makes the
switch completely.

➤➤ These databases are relatively slow at creating, retrieving, updating, and deleting data. Your
brain is much faster than the others at some tasks but is not good at manipulating a lot of
information all at once. For example, how quickly can you list your 20 closest friends in
alphabetical order? Even picking your closest friends can be difficult at times. (And don’t
think you can cheat by using Facebook because you probably have hundreds of friends there
and we only want your top 20.)

➤➤ Your brain can give different results at different times depending on uncontrollable factors
such as your mood, how tired you are, and even whether you’re hungry.

➤➤ Each of these databases is located in a single place so it cannot be easily shared. Each also
cannot be easily backed up, so if the original is lost or destroyed, you lose your data.

The following section considers how you can translate these strengths and weaknesses into features to
prefer or avoid in a computerized database.

DESIRABLE DATABASE FEATURES

By looking at the advantages and disadvantages of physical databases, you can create a list of features
that a computerized database should have. Some are fundamental characteristics that any database
must have. (“You should be able to get data from it.” How obvious is that?)

Most of these features, however, depend at least in part on good database design. If you don’t craft a
good design, you’ll miss out on some or all of the benefits of these features. For example, any decent

